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Recent developments in quantum set theory are used to formulate a program for 
quantum topological physics. The world is represented in a Hilbert space whose 
psi vectors represent abstract complexes generated from the null set by one 
bracket operator and the usual Grassmatm (or Clifford) product. Such a theory 
may be more basic than field theory, in that it may generate its own natural 
topology, time, kinematics and dynamics, without benefit of an absolute time- 
space dimension, topology, or Hamiltonian. For example there is a natural 
expression for the quantum gravitational field in terms of quantum topological 
operators. In such a theory the usual spectrum of possible dimensions describes only one 
of an indefinite hierarchy of levels, each with a similar spectrum, describing 
nonspatial infrastructure. While c simPlices have no continuous symmetry, the q 
simplex has an orthogonal group 0(m, n). Because quantum theory cannot take 
the universe as physical system, we propose a "third relativity:" The division 
between observer and observed is arbitrary. Then it is wrong to ask for "the" 
topology and dynamics of a system, in the same sense that it is wrong to ask 
for the "the" psi vectors of a system; topology and dynamics, like psi vectors, are 
not absolute but relative to the observer. 

1. T H E  M A N Y - S T O R I E D  T O W E R  

T h e  q u e s t i o n  we  ask  is still:  W h a t  is the  s imp le s t  v i ab le  t h e o r y  o f  a 

q u a n t u m  w o r l d ?  T h e  a n s w e r  to wh ich  we  n o w  h a v e  c o m e  is: T h a t  the  w o r l d  

is a q u a n t u m  set,  a n d  the re fo re  a q u a n t u m  s impl ic ia l  c o m p l e x .  A s impl i c i a l  

c o m p l e x ,  w e  recal l ,  is a set  o f  s impl ices ,  a n d  a s imp lex  is a p o l y h e d r o n  w i t h  

t h e  m i n i m u m  n u m b e r  o f  ver t ices  fo r  i ts  d i m e n s i o n .  T h e  s impl i ces  wi th  

w h i c h  we  b u i l d  o u r  t h e o r y  a re  n o t  " c o n c r e t e "  s impl ices ,  p o l y h e d r a  in  an  

a f f i n e  space ,  b u t  " a b s t r a c t , "  c o m p l e t e l y  d e f i n e d  by  the  set  cons i s t i ng  o f  

the i r  ve r t i ces ,  w h i c h  we  bu i ld  f r o m  n o t h i n g  us ing  the  o p e r a t i o n s  o f  set  

t heo ry .  
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The world is elegantly expressed as a complex of concrete polyhedra by 
Regge (1961), of abstract cells by Susskind (1977), and of concrete simplices 
by Christ et al. (1982) and Lee (1983). These programs assume commuting 
coordinates and both Regge and Lee put a classical time space continuum 
into their polyhedra, where clocks and metersticks cannot go. These vestiges 
of the continuous we consider as provisional intermediaries on the way to a 
deeper theory. At the same time we do not create our theory from a state of 
pristine ignorance. We assume that present physical theory works as well as 
it does because it has a structure that is correct in important ways, and we 
demand that our theory have a correspondence principle governing the 
transition from the discrete to the continuous, a singular limit in which the 
chronon or fundamental time § ---, 0. 

In this paper we apply this correspondence principle to the vertical or 
hierarchic structure of physics, as well as to the more familiar horizontal 
time-space structure, and we are lead to postulate that the vertices of the 
world complex are fermi, and that the simplices have an internal quantum 
geometry already defined by the vertex algebra. Moreover, the topological 
degrees of freedom of our quantum simplicial complex, with no additional 
metrical variables, already define a quantum gravitational field. 

By the vertical structure of physics we mean the following. If we follow 
the existing theories of physics to their mathematical foundations, we 
always find that present theories, even those called unified, are hierarchic 
towers of several heterogeneous stories of increasing abstraction and depth: 

Story 6. Empirics. This would once have been a point at the top of the 
tower, representing the values of all the coordinates of the world; reality. 

Story 5. Dynamics. If we do not know the values of all the coordinates, 
we may still know the law of nature; nowadays, Hamiltordans, Lagrangians, 
or action principles. 

Story 4. Kinematics. If we do not know the law, we may still know the 
degrees of freedom; nowadays, gauge fields, such as the electromagnetic and 
its weak and strong generalizations, and their sources. 

Story 3. Time. If we do not know what the fields are, we may still 
know their time space geometry: the gravitational pseudometric tensor g of 
Einstein. Some theories have no floor between stories 3 and 4. 

Story 2. Topology. If we do not know time from space we may still 
know what is connected to what: the open set structure and the differential. 
In principle this might be two stories; we will not need such detail. 
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Story 1. Set Theory. If we do not know how the points are connected, 
we may still know them individually and in sets. In Principia Mathematica, 
set theory is the theory of the membership relation; we renounce this 
concept of set theory soon. 

Story 0. Predicate Logic. If we do not know the points of the theory, 
we may still know the logical laws obeyed by predicates about these points: 
the algebra of the logical operations and, or, not. These laws are defined by 
the algebra (a lattice) of subsets of phase space for classical physics, and of 
the Hilbert space projection operators (henceforth: projectors) for quantum 
systems. 

Quantization on first encounter seems a penthouse on this tower, or a 
new story; but Von Neumann (1932) points out that quantization trans- 
forms story 0, from a logic without complementarity to a complementarity 
logic. It is important for our work that complementarity leads to a second 
relativity, deeper than the first, with unitary transformations of a Hilbert 
space basis instead of point transformations of a manifold as the relativity 
group (Davis, 1977). Thus the construction has returned to ground level. 
The quantum field theories of today, with their classical foundations, are 
incoherent, grafts of quantum limbs onto classical bodies, and may there- 
fore be provisional, a hybrid classical-quantum (cq) stage in the develop- 
ment of physics from totally classical (c) to wholly quantum (q). To preserve 
correspondence from q to cq to c and to construct a coherent theory, we 
should rebuild the tower on a base of q predicate algebra, with a q set 
theory, q topology, q time, and so forth to the top. 

A major challenge for this program is a basic theory of the gauge 
structure and particles of nature. While gauge theory began as a theory of 
the electromagnetic field, with the most simple gauge transformation possi- 
ble, it has evolved into a much richer theory, involving all the interactions, 
including gravity. Our working hypothesis is a "plexus principle": The 
observed gauge structure is too complex to be basic and arises from a basic 
"plexus," or q topology (defined below), in a c continuum limit; somewhat 
as the Burger's vectors of the solid state, which describe a gauge field 
appropriate to crystals, arise from the topology of crystals. This is simply 
the only natural origin for gauge with which we are acquainted. [Duerr and 
Sailer (1981) and Veneziano (1983) also consider gauge fields to be nonbasic 
and composed of fermions. Riemann already declared that the metrical 
properties of discrete manifolds were determined by their topology.] 

The plexus principle suggests that the fight topology provides its own 
kinematics, and that many fields will appear in the continuum approxima- 
tion, not one unified field, when many kinds of defect are possible in the 
plexus. 



1068 Finkelstein and Rodriguez 

Each of the following sections deals with the reconstruction of one 
story of this tower, starting at the base, until the view from story 3 invites us 
to sharpen our goal and seek a "basic" theory (Section 5). 

Only suggestions of the highest stories are given (Sections 6 and 7). We 
find, however, that in a basic theory there is no room for an absolute 
dynamical law, such as a Lagrangian for the universe. There must always be 
a coordinating system (CS) and a system coordinated (SC). The unity of the 
universe is expressed in physics not by the absence of such a cut but by its 
arbitrariness. We caU.this the third relativity. A relative dynamical law says 
that we, a certain CS, can (or cannot) carry out a certain process on the SC; 
for example, a certain initial determination (Pl  of photon polarization 
followed by a certain final one IP'(- An absolute dynamical law says that a 
certain process can (or cannot) go on in the universe, speaking from an 
absolute point  of view that is usually unattributed or deified. Measurement 
theory in some part arises from a wish to derive relative from absolute law. 
We propose that this wish is futile, and that for law as for time and truth, 
the actual relations between CS's preclude the reduction of the multitude of 
relatives to one absolute. By relativizing the base, we relativize the whole 
tower. 

There is a curiously Leibnizian flavor to the theory that emerges from 
this construction, as though mentioning monads had called up a ghost. It is 
common to distinguish between the external  world of an elementary par- 
ticle, with coordinates txyz, and its internal world, with coordinates like 
flavor and nucleon number. In our theory, however, every possible world is 
the internal world of another possible world. Albeit in this weakened sense, 
the monad mirrors within itself the whole world. As a result the modes of 
description (topological, geometric, etc.) ordinarily used for the external 
world now have application at an indefinite number of deeper levels of 
hierarchy. 

Therefore our theory supplements the usual time space dimensions in 
two ways. First, the basic simplices of the world may have extra dimensions 
(on the same level as the usual four of time and space), and second, the 
vertices of each simplex may themselves be simplices (of a deeper level than 
the usual). 

A c complex has sharp points, breaking Lorentz invariance. It is 
reasonable to suppose that if the world were a c simplicial complex with a 
scale of time § for its edges, then violations of angular momentum conserva- 
tion (among others) would appear at energies 1/§ Since such violations are 
not seen, some suppose that the continuum approximation has been vali- 
dated to the highest energies we make today. 

The q simplex is Lorentz invariant. Since the q simplex has so much 
symmetry, it seems likely that q topology postpones violations to energies 
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much greater than 1/§ Therefore the chronon might be closer to Heisen- 
berg's fundamental scale (1 fro/c) than to Planck's. Lee and collaborators 
reach the same conclusion by imbedding the simplex in Minkowski time 
space and averaging over all possible positions and orientations, thereby 
recovering symmetry. 

Now horizontal, one-level theories of companion dimensions like 
Kaluza-Klein require much smaller times than 1 fm/c for their new 
dimensions. Therefore we should also explore whether the internal gauge 
degrees of freedom might arise from levels below time space. Electric 
charge, for example, may be an ancestor rather than a sibling of energy. It 
seems possible to explain the weakness of gravity for § of Heisenberg size 
rather than to explain the tiny spacing of the mass spectrum for § of Planck 
size, when particles are to monads much as galaxies are to atoms. 

From the viewpoint of unified field theory, the deeper levels are best 
ignored, for they raise too many questions. Each level of infrastructure 
would have to be provided with .its own laws. The horizontal road of 
Kaluza-Klein theory is then the one to take. But from the viewpoint of q set 
theory, both are valid options, and both might occur in nature, as far as we 
now know. 

In an earlier work (Finkelstein, 1969), each time-space point is given a 
Clifford algebra of spin-l/2 operators, so that, in Weizs~cker's phrase, the 
world is a pattern of q binary decisions (between unspecified alternatives, 
which may be called up or down). The algebras at different points commute, 
in the way commonly assumed for independent variables. In the present 
work, there is again a Clifford algebra at each point, though not always the 
Pauli spin algebra, and operators at different points anticommute. The 
world is still a pattern of binary q decisions (now specified: to be, or not to 
be) but they are fermi. Now the binary nature of these decisions has nothing 
to do with the dimensionality of time space, which changes from place to 
place. 

2. QUANTUM SET THEORY 

Where the logic of classical physics represents predicates about the 
system under study by subclasses of a sample space, called phase space, 
the logic of current q physics uses subspaces of a Hilbert space, or the 
projection operators thereon. 

As far as the general principles of c logic are concerned, one sample 
space is as good as another; these principles are no help in choosing the 
sample space. Nor do they distinguish between points in the sample space: 
The group of each such predicate algebra is the permutation group of its 
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sample space, and this acts transitively. But then set theory provides a 
unique sample space, the class of all sets, and provides additional structure 
that totally reduces the symmetry group (to 1). Classical mathematical 
physics has no difficulty working within this sample space. The hypothesis 
that the world is a set seems to eliminate nothing. Classical set theory is 
universal in a certain sense. 

In fact, the world seems not to be a c set, since its predicates do not 
even form a c predicate algebra. The possibility remains, however, that it is 
a "q  set," a concept which we formulate now by analogy. 

As far as the general principles of q logic are concerned, one Hilbert 
space is as good as another; q predicate algebra is no help in choosing the 
Hilbert space. Nor does it distinguish between Hilbert vectors: The resulting 
predicate algebra is invariant under the unitary group of its Hilbert space. 

This situation is intolerable for physics. We require a definite Hilbert 
space, and we require sufficient further structure to describe the physical 
difference that we experience between the processes represented by different 
transformations of this space. 

It is plausible by analogy with c set theory that q set theory have a 
unique Hilbert space, additional structure totally reducing the unitary 
group, and a universality similar to c set theory. A correct q set theory 
might satisfy the physical need for a unique Hilbert space and a totally 
broken unitary group, as well as the desire for a coherent theory. This 
provides further motivation for the following constructions. 

When a c set is completely described by a suitable binary sequence of 
the bracket symbols " ( "  and " ) , "  a q set, eluding complete description like 
any other q system, is maximally described by a formal sum (superposition) 
of such sequences. (We revise this notation soon.) Set theory imagines 
uncountably long sequences of brace symbols generated by transfinite 
induction; here we assume that only finite sequences have basic physical 
meaning. Thus q set theory adds to the c set theory of Principia Mathe- 
matica only the operation of addition representing q superposition. It adds 
to the usual algebra of cq many-body theory, which already has superposi- 
tion and much of set theory, only the operation of "bracket," while 
replacing the usual Grassmann or exterior product by a Clifford product. 
Finkelstein (1982) and Finkelstein and Rodriguez (1983) introduce the q 
sets described here. Just as any c object may be modeled as a c set, we 
suppose any q object may be modeled as a q set. 

Notation for q Set Theory. Formally, q set theory is a class S provided 
with one basic object 1, one basic monadic operation of bracket (s I, and 
three basic dyadic operations of addition s + t, inner product s , t ,  and 
Clifford product sl i t ,  obeying familiar postulates described below. 
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The needs of the q theory force us to modify the usual notation for c 
sets. We think of each c set as a predicate or class of a hypothetical object, 
an "indefinite set" S; as, in fact, a unit class, an atomic predicate, giving 
complete information about the indefinite set. Even in the c theory we 
represent these predicates in the q way, by certain submodules called rays 
in a module S (generalizing the Hilbert space of the usual q theory and its 
rays). We call the elements of S plexors, (Finkelstein, 1972) in anticipation 
of their use in q topology. The general S plexor is defined inductively: 1 is a 
plexor. If a and b are plexors then so are blla, ( a  I, and a + b. The sum and 
product  here are familiar ways to combine fermi psi vectors and the symbol 
( a  I expresses the fundamental topological operation of this theory, called 
bracket. It is used, for example, before composing a simplex (a~l(b~l(c  I 
from its vertices a, b, and c, and before composing a complex from its 
simplexes. The bracket symbol ( I combines the brace { } of Cantor and 
the ket [ ) of Dirac. We write it also with an operator symbol B: 

B: u--" Bu= (u[ 

Like Cantor 's symbol but not Dirac's, brackets nest, as in ( (aB(b l l .  Like 
Dirac's but  not  Cantor's, brackets add, as in (aJ+  ((b[I, so defined that B is 
linear: 

(ul+__(ol:=<u~ ol 

This is the main difference between the set theory of Takeuti (1979), with its 
infinity of nontrivial central (superselection, c) quantities, and ours, with 
none. Any bounded linear function q on S with integer values we call a 
coplexor, and we write the value of q on p as qp. We form the coplexor p* 
adjoint to p (in the sense of Hilbert space) by reading p backwards; this 
plexor adjoint is inductively defined by the rules 1 " = 1 ,  (s t)*=t*s*,  
(s + t)* = s* + t*, and (sl* = Is*(. We define the adjoint *q of a coplexor q 
analogously. 

Classical Plexors. The plexors made inductively from 1 by (Clifford) 
product  and B alone are called c plexors because each represents a c set. 
The set S of c plexors and its interpretation are defined inductively: 1 is in 
S and represents the null set. If a and b are in S and represent sets A and 
B, then (a[ is in S and represents {A}, and allb is in S and represents the 
Boolean union A B B  (union less intersection). Classical plexors are simple in 
the Grassmann sense; the converse is false. By a c basis we mean one 
consisting of c plexors. 

We form the (plexor) transpose - s of a plexor s by first forming the 
adjoint s* and then replacing every " ( "  in s* in s* by a "[" and every "1" 
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by a " ( . "  The linear operator - is an anti-automorphism of S and respects 
bracket: - B  = B - .  Any c pIexor is an eigenplexor of - ;  we call the 
eigenvalue the signature of the plexor. 

For  any plexor p the linear operators of left and fight multiplication by 
p are written p. and ~b. and defined by p.q = pl lq ,  p' .q = ql lp.  Then 
(p . )*  = ( - p) .  

The transpose - makes S a * algebra of which - is the *, and is not 
to be confused with another anti-automorphism, the Clifford tranpose, 
defined by reversing the monadic factors in an expression for s. The 
Clifford transpose is called the "main  ant iautomorphism" by Riesz (1958), 
and designated by " there. Both transposes are diagonal in a c basis, with 
eigenvalues + 1 and - 1 ,  but they have a different distribution of these 
eigenvalues. The Clifford transpose i s  a "surface" reversal and does not 
respect B, while the plexor tranpose " is a total reversal and respects B. 

The Clifford Algebra of q Set Theo l .  BS, the map of S by B, is a 
submodule 3~/ of S. We postulate that S is a Clifford algebra over the 
module 37/= BS. 

If  m is any element of BS then m l l m  is therefore a c number, which 
~ve write as c(m,  m), the Clifford form of S. 

The Inner Product of S. To agree with c set algebra we postulate that c 
plexors belonging to different c sets are orthogonal and have inner product 
1 with themselves. (This is a chancy but simplifying assumption. The c sets 
might, like the c states of the harmonic oscillator, be overcomplete and 
nonorthogonal.)  Any plexor in S is a superposition of plexors in S and 
represents a predicate about a "q  set" S. S is a multiplicative group whose 
members  all have order 2, and S is its group algebra. 

Closure. A ray in a module M is a special case of a closed submodule 
of M, which we define first. Let co M be the module dual to M, consisting 
of linear functions on M with c-number values (presently integers). I f  m is 
any member  of M and m',  of co M, we write 

m'om 

for the assertion m 'm = 0 that the value of m '  on m is 0. More generally, 
we write L'oL for any subclasses L of M and L '  of co M to mean that 
m'om holds for all m in L and all m '  in L'.  We designate by oL the class 
by all m '  obeying m'oL, and by L'o the class by all m obeying L'om. By the 
closure of any subclass L of M we mean the class (oL)o.  We call a class 
closed (with respect to o) if it is its own closure. We say x and y are equal 
modulo o and write x = y rood[o] if oxo = oyo. 
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Predicate Algebra of q Set Theory. In q logic, only closed submodules 
represent predicates. For example, the submodule of even integers is not a 
predicate about the q set, while its closure represents the null set (predicate). 
A ray is a submodule that is the closure of one nonzero member. Thus the 
ray representing the null set consists of the c numbers (coefficients) of the 
module. On the other hand, the submodule representing the universal class 
(total ignorance about the q set) is the entire module S. For any class K of 
plexors we write [K] for the projector upon the closed submodule spanned 
by K; a closed submodule X is equally defined by [X]. Since [S ]=1 ,  the 
numeral 1 when read as a member of S represents the null set and when 
read as a projector on S represents the universal class, a harmless ambigu- 
ity. Classical plexors belonging to distinct sets anticommute: ss' = - s's; but 
s a n d  - s represent the same predicate. Thus the c plexors cover the c sets 
twice. 

For  simplicity we use integer coefficients in the algebra S. (It will be 
seen below, in addition, that some topological information about torsion is 
lost if we use a field of coefficients, like the rational or complex field, at the 
start.) 

G r a s s m a n n  Algebra  of  q Set Theory. Like any Clifford algebra, S has 
a natural Grassman product sAs', also associative, related to the Clifford 
product  ss' by 

m m m ' = m A m ' + c ( m , m ' )  

for all monads m and m'. Here c(m, m') is the Clifford form, the polariza- 
tion of the quadratic form c(m, m) already introduced. The Grassmann 
product  is sometimes regarded as a c limit of the Clifford, in the way that 
the usual product  of c mechanics is the c limit of the noncommutative q 
product,  since in both limits the anticommutator or commutator, respec- 
tively, is made to vanish. In S, however, both products have separate and 
simple interpretations. Just as the Clifford product of the q theory corre- 
sponds to the Boolean union of the c, the q Grassmann product corre- 
sponds to the c disunion, defined to be the union in the case of disjoint sets, 
and undefined ( = 0) for nondisjoint sets. 

has a Grassmann grade expressing set cardinality, and an element of 
of grade 0,1,2 . . . .  is called cenadic, monadic, dyadic . . . . .  Plexors of even 

grade are bose and those of odd grade are fermi. If an n-adic plexor is the 
product  of n c monadics, we call it an n-ad (cenad, monad . . . .  ). (C. S. Peirce 
writes "kenad ,"  but "ceno-" is the more familiar form of the prefix meaning 
"empty ."  Moreover it is fitting that c numbers be cenads.) The operator 
[G = 0], which may be read as " the  zero-grade part of," stands for the 
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projec(tion opera)tor upon the zero-grade submodule in S; similarly for 
[ G = I ] ,  [ G = 2 ]  . . . . .  As a coordinate of the q set, the grade is then 
represented in the usual q way by the operator having the n-grade projec- 
tors [G = n] for its spectral resolution and the corresponding grades n as 
eigenvalues: 

G = [G =11+2[G = 21+3[G = 3 ] + . . .  

Any c plexor is an eigenplexor of G and its eigenvalue is its cardinality as a 
c set. [G = 0] is somewhat analogous to the usual vacuum projector, [G = 1] 
to the 1-particle projector . . . . .  But [G = 0] produces not the vacuum, which 
occupies time space, but the null set, which does not: [G = 0]=11".  This 
enables--rather,  compels--us to build up the world point by point. 

Let L = L ( S )  be the class of module endomorphisms of 5~, "operators." 
We extract the grade-n part of any operator Q of L ( S )  by the definition 

e [ n ] = [ G - - n ] Q [ C = n ]  

The inner product of plexors s with t already defined is given by 

t , s  = [ a  = 0] ( (  - t ) s )  

We use also the operator 

J,-- [ c = o ] - [ G  = 1 ] + [ c - -  2 ] - [ G  = 3]+ . . .  

the Gth power of - 1 ,  called the "main automorphism" of the Clifford 
algebra by Riesz (1958). We call J statistics because it is + 1 for bose 
plexors, - 1 for fermi plexors. 

Physical Interpretation of q Set Theory. We see that S is both a 
Hilbert space and a Clifford algebra; both structures have immediate 
physical interpretation. 

As HUbert module, S expresses the q aspect of nature. The addition of 
this module represents q superposition. A transition s --* t is impossible if 
the inner product or transition amplitude t . s  vanishes. 

As Clifford algebra, S expresses the combinatory aspect of nature. The 
Clifford law m l l m = l  for a monadic m expresses what c set theory 
expresses by the Boole law slls = 0; indeed, the Clifford product arab 
represents the Boolean or symmetric sum of sets a and b, the union less the 
intersection; Boole represented this group operation on c sets with ~ and 
we shall henceforth call it the Boolean union, writing it as a product. 1 or 
more generally any nonzero c-number represents the null set and Clifford's 
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law holds in the form 

ml lm  = c( m, m ) 

for any monadic m; here c(m, m) is a quadratic form in m, the "quadratic 
Clifford form," first defined for monadics and then extended to all of S by 
the definition 

c(s ,  s )  = [ 6  = 01(sins)  

B is linear and preserves inner product and Clifford form. 
For example, from lml = 1 and the preservation of the Clifford form 

under  B follows ( l l m ( l [ = l ~  ( ( l l l m ( ( l l ] = l  . . . . .  Therefore 
( lpl(( l l~l( lpl(( l l ]  = - 1 ;  this permits us to express subtraction in terms of 
addition, multiplication, and bracket alone. At the same time this shows 
that, while the inner product of S is positive definite, the Clifford form of 
is naturally indefinite. We call plexors of negative square imaginary, those 
of positive square real, those of zero square null. We assign these plexors the 
signatures - ,  + ,  and 0, respectively. This extends the previously defined 
concept of signature from c plexors (where it is the eigenvalue of - ) to 
general plexors (where it is not). We later suppose that the indefinite 
pseudometric form g of Einstein derives from this indefinite Clifford form, 
so that S carries the seeds of both quantum theory and relativity. 

The e-Numbers of q Set Theory. Ultimately we must pass from plexors 
with integer coefficients to the familiar psi vectors with complex coeffi- 
cients. We do this in two stages. Here we introduce real coefficients. We 
regard the reals as limits of rational sequences, introduced to make statisti- 
cal computations convenient; while a vector with a finite number of rational 
coefficients expresses the same predicate as any vector with integer coeffi- 
cients that results from multiplying by a common denominator of the 
coefficients. It is well known that the system of forbidden transitions 
(orthogonality relations) determines the transition probabilities (direction 
cosines) in Hilbert spaces of more than two dimensions. Therefore no 
additional story is required for the q mechanical transition probability 
formula 

prob( t , s )  = ( t , s ) ( s , t ) / ( t , t ) ( s , s )  

a rational number. 
Eventually we must recover complex coefficients. From the real point 

of view, i (the square root of - 1 )  is a central (c or "superselection") 
operator linked with time by Heisenberg's equation of motion, and the 
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minimal (atomic) predicates, one-dimensional projectors of the usual com- 
plex Hilbert space, are two-dimensional projectors in the associated real 
Hilbert space. We therefore postpone i until we have time. 

Further Operations of q Set Theory. We define further operations of 
set theory for plexors first, and we do this by giving their values on a basis 
for S and then extending to S linearly. Then we define the operations for 
rays projectively. 

We select a basis thus: By the binary value of a sequence of the 
symbols "~," "1," and "1," we shall mean the number 1 if the expression is 
itself simply "1," and otherwise the number whose binary representation is 
made by ignoring every ' T '  in the expression and reading "<" as 1, "[" as 0. 
Thus omitting l ' s  inside brackets does not affect the binary value of a 
plexor. By the select plexor for a c set we mean that c plexor representing 
the set with the least binary value. Thus, for example, <llm((lll is a select 
plexor and ( ( l t l < l  I is not. By the select basis for S we mean the select 
plexors for the c sets arranged in the order of their binary values. This is a 
largely arbitrary way of singling out a definite basis. 

Universal set U. The projector I represents the universal class, we have 
noted. On the other hand there is no universal set in S. The set U of all 
finite sets is infinite, hence not represented in S. For each n, however, we 
may form the product U(n) of the first n monadic plexors in the select basis 
for S. 

V ( n )  . . . . .  m " m '  

For any fixed plexor, U(n) will serve as a universal plexor when n is 
sufficiently large. Accordingly, we shall often write a fictitious plexor U for 
U(n) in an equation with the understanding that the equation is to hold for 
sufficiently large n. This U is an effective universal set. 

Likewise we define a left complement UIIs and a right complement 
smU of any plexor s, with Urns = sllU mod[o] for classical s. The disunion 
of plexors s and s '  is the Grassmann product sAs '  already defined. 

Clifford Group. When we use integer coefficients, we require the fol- 
lowing generalization of the concept of inverse: We say that s and s', 
elements of S, are projective inverses of each other, if s l l s ' = s ' l l s = l  
mod[0]. 

The Clifford group (Chevalley, 1954) of a Clifford algebra is the group 
of all elements g with projective inverse g '  that map all monads m into 
monads gl lmllg ' .  
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While the Boolean union is invariant under the Clifford group, the 
disunion is invariant under the general linear group. A bilinear product 
s ' N  s " =  s is a candidate for a q intersection operation if whenever s '  and 
s"  represent c sets, s represents the c intersection. There exist infinitely 
many such candidates, and the criteria of group invariance that so narrow 
the field for the Boolean and disjoint unions do not work here. While the 
universal plexor U, the Boolean product s l l s ' ,  and the disjoint union s A s '  

are largely independent of basis, the intersection is very basis dependent. A 
q un ion- - ra ther ,  an infinite number of t hem- -may  be similarly defined. 

The induced operations on rays in S then represent operations on sets 
(actually, on unit classes of the q set). 

Properties of the Bracket B. B maps both fermi and bose plexors into 
fermi. Bracket B and its Hermitian adjoint B* are related by 

B*B =1 

B B * =  [G =1] .  

Since B commutes with itself and does not anticommute with itself, B too is 
bosonic, and the nontrivial commutation relation is 

B * B - B B * = I - [ G = I ]  

The maximum number of nested brackets in (an irreducible expression for) 
a c set is called its rank. Rank is defined inductively for c plexors and 
extended linearly to the rest. Nonzero c numbers have rank 0; the bracket of 
a plexor of rank r has rank r + 1; a product of distinct c plexors has the 
maximum of their ranks. The projector on plexors of rank r is written 
[R = r], and R = [R = l ] + 2 [ R  = 2]+ . . .  defines a q rank, represented by 
the linear operator R on S whose eigenplexors include the c plexors and 
whose eigenvalues are their ranks. Bracket increases rank by 1, and this 
leads to the commutation relation 

R B  - B R  = B 

We may give explicit matrices for these operators in the select basis. With 
respect to the select basis, operators are represented by matrices whose rows 
and columns are labeled by select c plexors. The operator B is represented 
by a matrix with one nonzero element in each column, and in a column 
labeled by the element s of S a 1 stands in the row labeled by the monadic 
(s  I. (If s is select, then so is (sl.) Of course, R and G are diagonal in the 
select basis. 
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Creators and Destructors of q Set Theory. Each monadic m has a 
crea(tion opera)tor c,. defined as left Grassmann multiplication by m: 

Cmn = m a n  

Grassmann multiplication by any monadic m increases grade by 1, leading 
to the commutation relation 

Gc m -- crag = c m 

The Grassmann product t A s  may be expressed in terms of the Clifford 
product: 

t A s  = [ t l l s -  J . ( s l l t ) ] / 2  

= [ t -  J t ' ] . s /2  

Dropping the operand s, we have the operator identity 

c t = [ t -  J t ' ] / 2  

The adjoint of c, is the destruct(ion operat)or 

a t = c * =  [ ( - t ) + J ( - t ) ' ] / 2  

and for monads m, m', the two obey the canonical anticommutation 
relations: 

dmc m, + c m , d  m = m *m ' 

We sometimes call d x y  the derivative of y with respect to x. It is the most 
natural correspondent within q set theory of the c concept of set inclusion. 
For  c plexors, d x y  = 0 means that x is not included in y; and d(~ I = 0 
means that x is not a member of y. 

We designate by d~ the destructor module  consisting of all the destruc- 
tors d s for all s in S. 

These operators create and destroy vertices, not particles. The particle 
creators and destructors depend on the dynamics of the theory, specifically 
the energy, which has not yet been specified. 

Clifford Algebra of Operators. Less than maximal predicates are repre- 
sented by subspaces of S, or by projectors on these subspaces. These and 
coordinates of the q set belong not to S but to the algebra L = L ( S )  of 
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"l inear  operators" on S. L is also a natural Clifford algebra, over the direct 
sum of 37/(the monadic submodule) and co37/. Proof: As m ranges over the 
c monads, the corresponding creators and destructors c,, and d m range over 
a set of generators for L, a count of dimensions verifies. The canonical 
ant icommutat ion relations for the monadic creators and destructors make L 
a Clifford algebra over the direct sum of their modules, isomorphic, respec- 
tively, to M and its dual. 

Inclusive Statistical Operator. By the intension of a c set we mean the 
membership predicate for the set, or equivalently the class of its members. 
In many-body theory, the correspondent of intension goes from a many-body 
or "wor ld"  ray projector W to a 1-body statistical operator w[1] that is a 
projector if and only if the ray of W is simple (contains a product of 1-body 
psi vectors). In Grassmann algebra, the analogous operation goes from a 
simple vector to the subspace spanned by its grade-one factors. More 
generally, any W defines a well-known inclusive statistical operator V = V[ W] 
in the many-body fermi space whose n-body part V[n] is the inclusive 
n-body statistical operator. V[n] is defined by W through the condition that 
for any n-body quantity q[n], V[n] gives the same expectation value as W: 

tr( q [ n ] V [ n ] )  = tr( q [ n ] W )  

Here the trace operation on the left is over a fixed n bodies, while that on 
the right covers all the bodies in W. This functional relation from W to V is 
linear, and may therefore be extended to an arbitrary statistical operator W, 
called exclusive to distinguish it from V. We write this relation as V = inc[W]. 

We take this procedure over intact into our Clifford algebra. If w is 
any plexor, we write inc[w] for the operator in L whose grade-n part v[n] 
obeys the following operation condition for any grade-n operator q[n]: 

tr( q[ n ] v[ n ]) = tr( wq[ n ]) 

The operator inc is respected by unitary transformations of S that respect 
grade. For  any orthogonal monadics m', . . . .  m "  with product plexor p = 
m"  �9 . .  m', the grade-1 part of inc(pp*) is exhibited here: 

i nc (pp*)  = m'm'* + . . .  + m " m " *  +high grade terms 

It is implied that inc( l l*)  = O. Thus the inc of a c plexor is c. B*inc[pp*]B 
agrees with the c concept of the intension of a finite set p. 

Because our objects are finite and some of our classes are not we have 
the familiar situation that not every class is the intension of a plexor, though 
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every plexor has a class that is its intension. For example the projector 1 is 
not the intension of any plexor, but only of the fictitious plexor U. 

The inclusion number for m is the projector 

~t N[m] ,=dmd,, 

It is the number of m's included in the q set. The membership number is the 
projector N<,,r 

We cannot straightforwardly quantize set equality. Two objects are 
called equal when they have all their properties in common. But it is 
impossible to know all the properties of q objects. It is therefore impossible 
to know the equality of two q objects. Indeed, it is not clear that where 
equality holds there will be two objects rather than one. We therefore avoid 
many problems by basing our q set theory on the bracket operation rather 
than on membership and equality relations. This has become an important 
maxim for us: Operations are more basic than predicates. 

3. QUANTUM TOPOLOGY 

We begin with a principle of topological relativity: A q topology will 
only be defined relative to a q coordinate system CS. For example, time 
space and energy momentum space have separate topologies, and it is the 
topology of time space that matters physically, not of energy momentum 
space. Quanta may be far apart in energy momentum and still interact 
provided they are close in time space. Thus a q topology breaks unitary 
symmetry. 

Fortunately, the unitary symmetry is already broken in q set theory, 
which defines its own CS. We shall suppose that some c basis is the CS to 
use in setting up the topology of time space, and we provisionally use the 
select basis. For other topologies we would use other bases. 

Of the many forms of topology (manifolds, open sets, networks, graphs, 
etc.), the one most natural for q set theory is simplicial complex topology. 
Chevalley (1955) recognizes the special relation of simphcial complex topol- 
ogy to Grassmann algebra, which is one aspect of q set theory. He gives 
every simplicial complex its own Grassmarm algebra; we give it its own 
Clifford algebra as well. Clifford already does this for simphcial complexes 
in a Euclidean or pseudo-Euclidean space, expressing the topological struc- 
ture with Grassmann algebra and the metrical with the Clifford form. Our 
complexes belong to S when they represent the instantaneous q set, and to L 
when they represent the q history of the q set. The Grassmann product 
underlying the Clifford product of L agrees with the Grassmann product �9 
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on S and co S, and therefore will be written with the same sign. Under it the 
creators and destructors in L anticommute. Clifford uses the points of a 
normed linear space to generate his algebra. We use here the algebra 
generated by the vertices as members of S or L. 

Interpretation of q topology. We shall interpret the points of a c 
simplex as incoherent superpositions or probabilistic mixtures of the vertices. 
Barycentric coordinates are then probabilities. We define the points of a q 
simplex as the coherent superpositions of the vertices. The coordinates are 
then probability amplitudes. In this way, we suppose, each simplex defines 
it own local linear structure for time space. We take the overall topology of 
time space as defined by the incidences among these simplices. 

In our q topology, a q simplex is formally the same as a q set. The two 
concepts differ semantically, not syntactically. The term simplex specifies a 
certain topological interpretation. This justifies our use of the term "plexor"  
for the vectors of ,~. We reserve the term "q  simplex" (and its synonym, "q 
set") for the process S having plexors for its psi vectors. A plexor is also a 
simplicial chain interpreted as a psi vector. 

may be interpreted as the Hilbert module of a q complex as well as a 
q set or a q simplex. Just as a set of vertices defines a simplex, a set of 
simplexes defines a complex. To get to the vertices of the complex we must 
remove two levels of bracket from a plexor. 

We illustrate here the plexor representation of topology. If p, p' ,  p "  
are arbitrary plexors, then ( p  ~ l (p '~ l (p" ]  represents a 2-simplex (triangle or 
triad) with them as vertices, and also a complex with them as simplexes. 
((pB(p'I'(p'II represents a complex with this triangle as its sole simplex, 
and also a simplex with one vertex. Now we have to distinguish between a 
vertex p, the simplex (p[ having p as its sole vertex, and the complex ((p]]  
having (p[  as its sole simplex. 

The relations complex: simplex : : simplex : vertex : : . . .  are all the same 
and we express them all by the bracket of a product, with the possibility of 
arbitrarily deep infrastructure. This sequence is open-ended; it is just the 
sequence of sets ordered by the relation of membership. We shall call 
complex, simplex, vertex . . . .  by the common name plexus. We assign the 
w o r ld - - o r  the plexus under s tudy- - the  level 1, its simplices the leve] 2, their 
vertices the level 3, and the new objects of the infrastructure are now called 
plexi of level 4, 5 . . . . .  Rank is a valuation of this order: The rank of a 
plexus is greater than the rank of any of its members. The grade of a plexus 
has different interpretations depending on the level of the plexus. For the 
plexus of first level, grade is a measure, the number of simplicial members; 
for the second level, the simplices, grade is dimension plus one; and so 
forth. 
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S, as a Clifford algebra of plexors, is not quite the Clifford algebra of 
forms we would arrive at by generaliTing the Grassman algebras associated 
with a complex by Sorkin (1975) and Weingarten (1976). S permits us to 
multiply two vertices (0-simplexes) of the complex and construct an edge 
(1-simplex), for example. The addition operation in S, moreover, is interpre- 
ted as q superposition. 

Homology and Holonomy. These two topological theories of simplicial 
complexes figure importantly in physical application: Homology, the theory 
of the boundary operator d, is important in the study of conserved currents 
and their sources; its adjoint d* is an exact finite expression of the field 
theoretic concept of the exterior derivative. Holonomy, the theory of the 
covariant derivative D and its integrability, is important in gauge theories, 
but the theory of D in simplicial complexes is not as developed as the 
theory of d. We quantize homology only here, and apply the methods we 
develop to holonomy later. 

Two c homologies present themselves for quantization, one with a 
boundary operator that is multiplicative (the multiplication representing 
Boolean union), and with a boundary operator that obeys the Leibniz law 
for a derivative. We call these multiplicative and additive homology, respec- 
tively. Since each monad is a square root of a cenad, multiplicative ho- 
mology is not integral, as is additive homology, but binary. Orientation, 
important for physics, is lost. 

Digression: A multiplicative homology with base other than two is 
possible, but it means giving up fermi statistics and Clifford algebra. For 
example, a ternary multiplicative homology seems to require parastatistics, 
and integral multiplicative homology, Maxwell-Boltzmann statistics. We 
pursue this though no further. In what follows, homology means additive 
homology. 

The two principals in the c theory are a boundary operator d de- 
termined by the vertices of the complex, and a chain module X, a closed 
submodule of a Grassmann algebra, which expresses the topology of the 
particular complex under study (Chevalley, 1955). The stage on which d 
and X perform is the Grassmann algebra generated by all the vertices of the 
theory. X is the closed submodule of chains, linear combinations of the 
faces of the complex under study, and the boundary operator d is the sum 
of the destructors d o over the vertices: 

d=d~,,+ . . .  +do,, 

= d o ' +  . . .  + v "  

�9 ~ d o 
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Here v stands for the sum of all the vertices of the complex. The homology 
group H ( X )  of a complex with chain module X is the remainder module of 
the module [d = 0IX of cyclic chains, (the chains c of zero boundary, 
dc = 0) by the module dX of bounding chains (the chains b of the form 
b = dx for some x in X): H , =  [d = 0 ] X - d X .  Since a Clifford algebra is 
also a natural Grassmann algebra, this d also acts on any Clifford algebra 
generated by the p's.  The identity dd = 0 follows from the fact that the 
d ' s  are anticommuting square roots of 0. 

We formulate a q correspondent of this c theory; briefly, we quantize 
homology. 

Quantum Homology. The first ingredient of any homology is its stage, 
a Clifford algebra. We take this to be S at first, for simphcity. 

The second ingredient is the boundary operator d. Following the c 
formula, we first take d = d V, where V is the sum of all vertices, taking this 
to mean the sum of the unit plexors of the coordinating system CS. This d 
will be used as the boundary operator for the universal complex U in our 
first example. The infinite sum is a purely formal intermediary in the 
calculations, to be handled in the same way as the universal set U. (V 
actually belongs not to S but to S**.) V* V =-" N is the number of points 
included in V at a given stage of the limiting process. The "plexor"  V is the 
ideal element written as ) by Dirac and we call V the principal plexor of the 
CS. 

Transformation Properties. By definition, when we change coordinates 
in S the plexors of S remain fixed. They are invariant geometric objects. (A 
geometric object is a function assigning a value to each CS, and a rule 
functionally relating these values is a law of transformation.) Another kind 
of geometric object is defined by the rule "Take  the first basis element of 
the CS." The value of this object changes with the CS; such objects are 
called relative. The principal plexor V is a relative plexor, not an invariant 
one. It points along the principal diagonal of the CS. Therefore the 
boundary operator d is relative, although the plexors it relates can be 
invariant. We take this to be the relativity of topology that we sought from 
the start. The crucial question of how d and its plexors transform does not 
seem to arise in the c theory. 

The last ingredient is the chain module X, which must be a closed 
submodule of S specifying the complex under study. X is evidently a q 
predicate defined by the world or the system under study, expressing 
empirical facts about the world, laws of nature, or initial conditions, it 
matters not which. If f is a face of a c complex and o is any point then dof 
is a face of f ;  the chain module X is required to contain all such faces of its 
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members. Here, therefore, we suppose X is invariant under the destructor 
module d~. We assume also that the projector [X] commutes with the 
grade G. 

Consider first the trivial case X = S  and [ X ] = I .  This describes the 
universal complex U. The operator d = d v is the boundary operator ap- 
propriate to [X] = 1, and obeys with its adjoint d* the relations 

d d * + d * d = N [ S ]  

( d a * ) ( a * d )  = 0 

where N is the large number of points in U. Thus aside from normalization, 
the two terms dd * and d *d in the canonical anticommutation relation form 
a spectral (.mutually disjoint, together complete) family of predicates in q 
logic, dd*S is the space of boundaries in the c theory, so we call its 
predicate [bounding], and that of d*d,~, the space of coboundaries, 
[cobounding], in preparation for the replacement of d by other boundary 
operators. (Brackets [. . .] here indicate projectors.) Similarly we define the 
predicate [cycle] by the subspace of plexors x with dx = 0: [cycle] .'= [d = 0]. 
Finally, the q correspondent to the c homology group is the q predicate 

[hole] .'= [cycle] and not [bounding] 

"Cycle"  also means "without boundary," "boundless": A q hole is the 
unbounding boundless. 

When we use a boundary operator b other than d, we prefix it as in "b 
cycle." 

[Cycle] is equivalent to [not cobounding], since dx = 0 implies that x is 
orthogonal to d*y  for all y, and conversely. Thus the completeness of 
[bounding] and [cobounding] means that [cycle] implies [bounding] and that 
U has trivial homology: [hole] = 0. 

For a nontrivial homology we consider a world described by a subspace 
X with IX] < 1. The boundary operator appropriate to this world is not 
d = d v but the derivative with respect to [X]V, restricted to [ X]: 

b = [ X ] a [ X ] = d [ X ]  

In the c theory this corresponds to the usual boundary operator d o for the c 
complex described by X. Unlike dX, the b-bounding chain module bX need 
not be closed. A chain x in X might not be a b boundary at the same time 
that 2x is a b boundary. In this case the quotient includes elements of finite 
order, torsion elements of the homology group, lost if we begin with a field 
for c numbers. We suppose now that we have computed the torsion 
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and enlarge the c numbers from the integers to the reals. Let N(b)'--- 
tr([X][G = 1]), the number of terms in b. 

Let [ X'] be the orthocomplement of [X] with [ X ]+ [X ' ]  = 1 and 
[X][X' ]  = 0, and let z be the transition operator z .'= [X]d[X']. Then 

bb* + b*b+ z z * = N ( b ) [  X] 

(bb*)(b*b) = 0 

In general this sum is not a direct sum. The first two terms are orthogonal 
and express q predicates of [b bounding] and [b cobounding]. The part of 
zz*,~ orthogonal both to bb*S and to b*b,~ means [b cycle and not b 
bounding], which is the q predicate [b hole] .'= H. Because [X] commutes 
with G, H is the direct sum of its grade-g parts [b homology and G = g], 
and these are the homology groups H[g]  = [G = g]H[G--g] of the com- 
plex. 

To sum up, the universal complex U is homologically trivial, but in it 
are found worlds X that have nontrivial homology. This is our model for 
the origin of holonomy (and therefore gauge fields) as well: The universal 
complex is flat, but in it there are curved worlds. 

This is an approximate theory, since it rests on a nonmaximal descrip- 
tion X of the world. A maximal description of a plexus is a plexor W, the 
"wor ld  plexor." If W is c then [X] ,= inc[B*inc[WW*]B] may be used as 
the statistical operator describing the chains of the plexus. (The inner inc in 
this operator  extracts the subcomplexes of the plexus; the inner B * - - - B  
selects the monadic ones and unbrackets their simplicial content; and the 
outer inc generates the faces of these simplices.) 

In an exact q theory following the usual correspondence from cq to c, 
the q boundary operator, being a function of the world plexus, is repre- 
sented not by a function of a plexor W but by a linear operator on S with c 
boundary operators for its spectrum. This is an application of noncommuta- 
tive spectral theory that we leave for later. 

Topological Reduction by Measurement. There is a basic discord be- 
tween the interpretations given by c topology and q logic to the same 
formulas, and the two theories use different formulas to mean the same 
thing. It is~diaconcerting that the boundary of a dyad or line xy is the 
coherent superposition x - y, since the boundary process and the dyad xy 
are both objects of c topology. If the boundary of xy consists of the points 
x and y, the q logical projector representing this boundary is not y - x but 
(xx* + y y * ) / 2 .  If, on the other hand, the boundary is actually a function 
taking on the values 1 on y and - 1  on x, then its q description is the 
operator  yy* - xx*, not y - x. 
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Quantum topology avoids this discord by taking the formulas of c 
topology with the interpretations of q logic. We suppose that in fact the 
boundary of xy at the most fundamental level is the coherent superposition 
y - x; that the basic boundary and derivative are q processes like creators 
and destructors, not c ones nor limits of c ones. The c point-set concept of 
boundary is related to the basic q boundary by the following reduction 
process. 

In c topology it is meaningful to ask "What  is the topology of the 
world?" (or of the system under study) but this question is not sufficiently 
leading to be meaningful in a q theory. The most one can ask in q topology 
is "Which  of this complete mutually exclusive set of possibilities is the 
topology of the world?" The possibilities provided form a CS for S (or in 
general for the relevant Hilbert space), and the operator whose measure- 
ment is required by this question we will call M = M[CS]. For example, if 
CS is the select basis, the value produced by M might be the binary value of 
the plexor representing the world topology. 

The usual c boundary is the class of points resulting from applying the 
q boundary operator and then determining M. For example, the statistical 
operator (x  - y ) ( x  - y )*  is then reduced to one diagonal in the given CS 
and only the incoherent superposition xx* + yy* remains. Thus the re- 
duced boundary is the predicate [one vertex or the other]. This is the class 
consisting of the two points x and y. 

In any CS any plexor w uniquely defines an operator W =  W ( M ) ,  
where M is a maximal commuting set whose eigenplexors make up the CS, 
by the relation w = WV, where V is the principal plexor of the CS. W is the 
psi function for w relative to the CS. While the statistical operator for w is 
ww*, the reduced statistical operator is W W * .  In c algebraic topology we 
use the q w to describe the c WW*, and we may do this only because we 
use but one CS, ignoring the relativity of topology. We reluctantly suspend 
further development of the topological story of the tower of physics to 
examine now how it supports the higher stories. 

4. QUANTUM TIME 

We may express time by giving its local invariance group; in general 
relativity, the action of the Lorentz group on the tangent spaces. 

The q simplex defines one local invariance group, the Clifford group G 
of its vertices. A transformation T in this group, a Clifford transformation, 
is one of the form 

7-: x --, T (  x ) = s : , s '  
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for some plexor s with projective inverse s', such that T preserves grade and 
Clifford form. T replaces each vertex by a coherent superposition of them 
all. The q simplex thus possesses a continuous symmetry that the c simplex 
lacks. In the terms of the old vector model of the atom, the q simplex points 
in all directions, and precesses swiftly about any axis. We call a plexor s a 
Clifford p lexor  if the transformation T it generates in the above way is 
a Clifford transformation. Over a field of c numbers, the exponential of a 
dyadic is a Clifford plexor. In the q theory the unitary Clifford transforma- 
tions generated by imaginary dyadic plexors are particularly important. 

Dirac taught us the importance of regarding the Lorentz group as 
(doubly covered by) a Clifford group, and the Lorentz pseudometric as a 
Clifford form. Now we hypothesize that the Lorentzian pseudometric form 
g and the Lorentz group are c limits of the Clifford form and Clifford group 
of S. This hypothesis unites the two important Clifford algebras of particle 
theory, Dirac's Clifford algebra of time-space vectors and the Clifford 
algebra of Ferrni-Dirac "involution" operators. (An involution operator is 
a sum or difference of creators and destructors, and toggles the quantum 
into and out of existence.) Points of the world are fermi, their pairs, 
representing time-space directions, are bose, and the Dirac spin operators of 
these directions are constructed from bracketed dyads, fermi. To show how 
neatly the usual spinor concept fits into q simplicial topology, we give it 
fuller expression in the next paragraphs. 

Simplieial Theory of Spinors. Our simplicial spinors, like the geometric 
spinors of Bank et al. (1982), are natural discrete versions of the continuum 
theory of Clifford numbers and spinors of Riesz 1958 and K~hhler 1962, and 
are close relatives of the lattice fermions of Susskind (1977). In the simpli- 
cial theory, however, the spin operators act upon the underlying complex 
and no spinor fields are postulated, while in the other theories the complex 
is frozen and the spin operators act upon postulated fermion fields. Let 
v, v', . . . .  v" be N + 1 orthogonal monadics in the space S of quantum sets. 
They are then anticommuting square roots of c numbers. In what follows 
we shall use the o's as (bracketed) vertices of a simplex in N dimensions, 
and one of them--which we call o--shall serve as origin. At the same time 
the o's are Clifford numbers, and may be considered as Dirac matrices or 
their higher-dimensional analogs. 

The dyadics formed from the o's other than v are N ( N  - 1) in number 
and the infinitesimal automorphisms they generate of the N dyadics con- 
taining the origin v represent the Lie algebra of an orthogonal group G ( v )  
in N dimensions, with index (number of negative, zero, and positive 
eigenvalues of the metric) determined by the signatures of the vertices. The 
typical finite element g of this group maps a dyadic e at the origin into a 
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dyadic f at the origin with gUe = f l l g .  Since a dyad is here being 
transformed by multiplication on two sides, it is natural to factor this 
transformation into two one-sided transformations of the two monads 
involved. However gnu is in general not a monad, and to form a linear 
space closed under multiplication by g we consider all the simplices that are 
faces of v l l v ' l l . . .  IIv". These fall naturally into two classes with respect to 
the group g G( v): those containing the origin, called "proximal,"  and those 
not containing the origin, called "distal." Since g does not contain v, these 
two classes, each of multiplicity 2 N, are invariant under g. A plexor which 
transforms by an initial factor of g, we call initial spinor (relative to the 
given simplex and origin) and one which transforms with a final factor of 
the inverse of g, we call a final spinor. 

Furthermore the group element g is of even grade, and therefore 
respects the division of the faces of the simplex into odd and even grade. We 
call spinors of these two classes odd and even. We thus find eight classes of 
spinors among the faces of the simplex, each with multiplicity 2 N-1. Each 
spinor may be initial or final, proximal or distal, odd or even. 

Since spinors and true plexors transform differently under the orthogo- 
nal group G(v), the alignment between them is not invariant. If plexors are 
invariant geometric objects, spinors are relative ones. In particular it is not 
quite fight to say that a monad is a sp in - l /2  object. The sp in - l /2  object has 
components  of all grades ranging from 0 or 1 to a maximum by increments 
of 2. If it includes a monad, it also had triadic . . . .  components. Rotation 
tears the topology when it mixes these components. 

In this way a spin-1 or vectorial object, a dyad at the origin, is 
expressed as the product of two sp in - l /2  objects, which in one CS are 
simply its monadic factors or boundary monads. 

In three dimensions (N = 3) there are four vertices vv'v"v"', and an odd 
initial spinor has the four components v, vllv'llv", v l l v " l l v " ,  oily " IIv'. 
These are the four real parts of the usual complex 2-spinor. We identify v', 
v", and v "  with the vertices along the x, y, and z axes so that the 
infinitesimal rotation around the z axis is v'llv". The first two spinor 
components  v, vllo'llv" then have spin up, the last two have spin down, 
and we recover the complex 2-spinors by the identification 

v T v " l v "  ,= i 

Gravity. In choosing the q correspondent of the pseudometric form 
g(a, b), we should bear in mind the two aspects of g(a, b). Here dyadics a 
and b correspond to vector fields in the c theory. In the c theory, g(a, a) is 
the integrated Lorentzian norm of a. In the cq theory, g(a, a) creates and 
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annihilates gravitons with a certain polarization and time space localization 
specified by a. Thus we expect the q correspondent to be an operator on S. 
Insofar as the dyadic a has spin 1, we expect g(a, a) to be atetradic 
quadratic in a. One natural choice is 

g(a,b)'.= �89 blla) 

Any choice, including this one, amounts to a geometric model of a graviton 
as a plexic structure composed of the vertices of the world. Here a certain 
coherent construction of four vertices is proposed. 

When the dyads a, b belong to one simplex and a', b' to a disjoint 
simplex, then g(a,  b) commutes with g(a ' ,  b'). No propagators enter into 
the commutat ion relation. This g(a, b) does not correspond to the canonical 
field variable of the cq theory but to the predynamical third-or hyper-quan- 
tized field variable. 

While a pentahedron is suggested by the four-dimensionality of time 
space, the generators of the Dirac group can be represented with the vertices 
of a tetrahedron. This tetrahedron may be identified with the distal tetra- 
hedron of a pentahedron relative to the origin chosen. 

Common time-space experience suggests that the simplexes in our 
world are mostly pentahedra, four dimensional, with Clifford algebras of 
real dimension 32, it follows, and that they have indefinite Clifford forms. 
We call the (Sylvester) index of a quadratic form the sequence of signs of 
the diagonal elements in its diagonal form, in the order - , 0 ,  + .  The 
dominant  index of the form g characterizing our time space is - + + + 
and would arise from simplexes with index - - + + + and - + + + +  
only. We speculate in Section 7 on why the time space index - + + + so 
prevails. 

Origin of Pseudometric Structure. Finkelstein (1969) identified the 
time-ordering of events with the order in which their symbols were gener- 
ated, postulating a basic causal relation. In the present q topology, however, 
temporali ty is expressed not by a basic causal relation but by giving each 
dyad (microscopic direction) a signature, - ,  0, or + ;  imaginary, null, or 
real; interpreted as timelike, lightlike, or spacelike. It is simple, also, to 
present a candidate for CPT (simultaneous charge, space, and time reversal). 
Because - is an all-pervading symmetry, we tentatively interpret - as 
CPT. 

In cq theory, temporal order is intimately connected with the order of 
factors in operator  products. If U and V are unitary operators representing 
two possible evolutions of a q system, then VU represents "U  and then V." 
The product  of plexors has no such temporal meaning and is a purely set 
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theoretic or combinatorial operation. As it were, the factors in each plexor 
reach out to each other and determine their mutual temporal relation 
regardless of the written order. 

A class of transformations of great dynamical importance is the unitar~j 
Clifford group, the intersection of the unitary and Clifford groups of S. 
Members u of this group connected to the identity are generated by 
imaginary dyadics a with 

Ga = 2a, 
~ a  ~ - - a ,  

u = exp(a)  

We regard this as the plexic analog of a dynamical transformation generated 
by a vector field, and indeed the dyad a, being a pair of points, is analogous 
to a vector. 

We see here why time-like dyads a may be characterized by their 
signature, the sign of g(a, a): They would not generate unitary transforma- 
tions if they had positive signature. This must be the origin of pseudometric 
structure. 

We may now form the one-parameter group exp(ta)  of dynamical 
plexors. Here first appears a parameter t which we can identify as a time of 
some kind. 

If a has no zero eigenvalues, then the anti-Hermitian dyad a factors 
uniquely into a Hermitian positive definite plexor h and a unitary anti- 
Hermitian i commuting strongly with h; that is, i is in the double com- 
mutant of h, commuting with every plexor that commutes with h. It is 
plausible that some such i is the complex i of Heisenberg's equation of 
motion, but it remains to be seen how far this i can be considered central. 
Moreover, since this exponential is not time ordered it is not yet in the form 
corresponding to the dynamics of present q field theory. 

The exponential converts the dyad into a superposition of polyads of 
various (even) grades. This grade corresponds to the number of events in the 
world (or the system under study) and we will be concerned with its larger 
values. The prevalence in our ordinary macroscopic experience of penta- 
hedral simplices has yet to be understood and delimited in a basic theory. 
The world is as if most of the terms in the dyadic a are products of two 
pentads. 

5. THE O N E - S T O R Y  T O W E R  

Let us recapitulate the stories we have quantized so far. Each basic 
n-ad defines it own linear space and topology by superposition. This gives 
the world its local topology. The global topology of the world arises from 
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the overlapping of its simplices, another set-theoretic construct. The 
Lorentzian pseudometric form and its Lorentz group derive from the 
Clifford form and group of a q set. Thus with q sets for story 1, there seems 
to be no separate story 2 (topology) or 3 (time). We had not anticipated 
such simplicity. To catch up with our theory, we sharpen the plexus 
principle: 

Story 1 of the q theory is a q topology from which a/ / the higher stories 
of the cq theory may be constructed. 

(We have no compelling reason to prefer sets to all other ways of 
modeling story 1, such as Conway 1976 "games." We use sets because they 
are well known, built from but two symbols, universal, and have no 
symmetry.) 

In Wheeler's paradoxical terms, the plexus principal requires topology 
without topology, time without time, and so forth; up to dynamics without 
dynamics, as in Finkelstein et al. 

We do not seek a horizontal integration of all fields on story 4 into one, 
called unification by Einstein and grand unification lately. Such unification 
is not a sufficiently directive (informative, restrictive) doctrine. We seek a 
vertical integration of all stories into one; not a hierarchy of theories, but a 
theory of hierarchy. Since the word "unified" is preempted for a horizontal 
integration, we call a physical theory with such vertical integration "basic." 
(Its tower is reduced to its base.) An  ultrabasic physics is expressible in 
terms of a single operator (and the usual operations of q kinematics), like 
the bracket operator B of set theory. No field theory is basic. 

6. QUANTUM KINEMATICS 

The plexus needs no separate story introducing the fields in the world. 
We assume as in Section 1 that all fields create and destroy various 
topological structures, such as defects, dislocations, .and kinks, in the plexus. 
A theory of this kind may still be basic. We conjecture that lines of force 
exist physically as discrete topological defect lines expressing non-integrable 
transport of simplices, and charges and other sources are the ends of these 
lines. This follows discretely the well-known continuum string theories of 
Dirac, Nambu, Susskind and others. 

7. QUANTUM DYNAMICS 

We have taken plexors in S to describe the physical world and found 
indications of a basic topology, time, and kinematics. Now we must find a 
basic dynamics. Where? 
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We have considered doing without dynamics; perhaps everything is 
possible, as Peirce, Shestov, and Strindberg, among other antinomians, 
declare. Wheeler (1980) believes that there is no law, that the universe is 
higgledy-piggledy. A lawless evolution like Brownian motion, however, 
increases entropy, and thus disagrees with a unitary evolution defined by a 
Heisenberg equation of motion, catastrophically as the chronon approaches 
0. To save correspondence we must retreat from the anarchy of Finkelstein 
(1980). We propose instead the renunciation of absolute dynamics and the 
construction of a plurality of relative dynamics. For this we require the 
following extension of the concept of relativity. We shall speak of a trio of 
relativities, each enlarged by the next, giving an increasingly faithful account 
of the relations of different CS's: 

First (c) relativity, including Galileo's and Einstein's. It assumes two 
different CS's have the same possibilities except for a relabelling x '  = f ( x ) ,  
a c transformation of the CS. 

Second (cq) relativity, which is Bohr's. It assumes two different CS's 
see the same system, and that for each CS the possibilities for the system are 
defined by a complete orthonormal basis in a Hilbert space associated with 
the system and the CS. It allows each CS to see new possibilities x ' =  Ux 
related to the old by a unitary transformation U, a cq transformation of the 
CS. 

Third (q) relativity. It will allow for the self-evident fact that two 
different CS's see different worlds, since each sees the other and not itself. A 
q transformation is generally not a unitary transformation, since the two 
CS's may have different numbers of possibilities in their basis. The relativity 
of dynamics is q relativity. 

Psi vectors are to abrupt initial or final processes as plexors are to the 
entire extended process. We follow this analogy further here. 

A psi vector is a symbol for a process carried out by CS upon SC at the 
beginning or end of an experiment. 

A psi vector gives more information about CS than about SC. For 
example, a psi vector given by the spinor (cosA,sinA) for a particle of 
sp in - l /2  may be used as a symbol for that determination, conveying one bit 
of information about SC: that it survived the process, one of two possibili- 
ties; and infinity bits about CS: that the polarizer has the angle 2A, one of 
infinity possibilities. (Let us ignore for just a while longer the actual limits 
that exist on the information capacity of CS.) We extend the process 
interpretation from psi vectors to plexors and thus to dynamics in general: 

Plexus Principle, continued. A plexor is a symbol for the entire process 
carried out by CS upon SC. 

We need not give a dynamics for a plexor, therefore; the plexor itself 
gives a dynamics. More generally, a statistical operator on plexors may 
describe a dynamics nonmaximally. 
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In standard cq theory, certain processes concentrated in time are 
represented by initial or final psi vectors; others, distributed over time, by 
Hamiltonians. We combine the three into one plexor as its initial, medial, 
and final regions, without sharp interfaces between them in general, since 
our initial and final processes are not truly instantaneous. Wheeler (1978) 
emphasizes that we participate in the process that a psi vector describes; but 
we also participate in the process that a dynamics describes. A cq relativity 
represents the former participation adequately, but, since the dynamics is 
described by an absolute geometric object, not the latter. In a q relativity 
there is no absolute dynamics, only a great many relative dynamics. 

Perhaps the transformations of q relativity contain not only c-number 
parameters of the usual kind but also q numbers, creators, and destructors 
transforming the old world into the new by creating the part that CS' sees 
and CS does not, and destroying what CS sees and CS' does not. If so, this 
might provide a physical interpretation for some of the anticommuting c 
numbers that presently seem so mathematically natural in many theories. 

At first the conclusion that there are many laws seems opposite to 
Wheeler's that there are none, but the difference is not that great: Many 
laws means no Law. The antinomian principle must be annotated: Every- 
thing (in the SC) is possible (to a suitably chosen CS). While it expresses a 
kind of anarchy from the viewpoint of the SC, from the viewpoint of the 
CS it expresses holarchy; not in the sense of total determination, which 
would violate the incompleteness of q logic, but in the sense of determina- 
tion by the whole. Since we ordinarily consider ourselves a small fraction of 
the CS, we ordinarily regard neither of these viewpoints as our own. 

This plexus principle seems a plausible extension of the usual descrip- 
tion of the influence of external currents by c-number fields in the dy- 
namics; it states that the whole dynamics has such a function. What is 
usually called "the" dynamics for q theory describes the influence of the 
cosmos at large as well as ourselves on the system. A cq dynamical law 
typically gives more information about the CS coordinating the experimen- 
tal process than about the SC. For example, just as a 2-spinor gives one bit 
about the SC and infinity bits about the CS, a 2•  unitary matrix 
representing the dynamics of a spin-l/2 magnetic dipole in a magnetized 
medium gives 2 bits of information about the evolution of the SC and 
infinity bits about the medium, part of the CS. Just as the (single-channel) 
determinations available to each CS are represented by the basic unit psi 
vectors of the associated frame, those with all vector components 0 except 
for a 1, the dynamical determinations of any one CS are represented by the 
basic operators of its frame, those with all matrix elements 0 except for a 1, 
consisting of a final determination followed by an initial one. 

The remarkable success of symmetry principles in discovering useful 
dynamics must then reflect the approximate symmetry of our actual cosmos 
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at large, and our presently limited ability to disrupt that symmetry. 
Finkelstein (1969) attempts to explain the index - + + + of time space 

by the special role of a two-dimensional complex spinor space in the 
dynamical law. Now that we have no absolute dynamics to blame, we must 
reverse this: A two-dimensional complex spinor space arises because index 

- + + + is often the case. Thus we must again seek a reason for the index 
- + + + .  Here is the only one we have been able to imagine. We present so 
thin a conjecture here only because it is demanded and hence to some extent 
supported by the hypothesis that a basic theory exists. 

According to third relativity, the origin of the index of the simplexes in 
the dynamics of SC must be sought in the CS. We may ask how index 
propagates from the CS to the SC; this shifts the boundary of the SC 
outwards. Laws of propagation are dimension-sensitive. For  example, the 
propagator of gravity falls off inversely as the square in the usual three- 
dimensional space, as the cube in four dimensions, and so on. If index 
propagates with an exponential dependence upon dimension, then at large 
distances the lowest dimension that propagates will dominate the higher 
dimensions. But space dimensions less than three are unviable for various 
well-known reasons, and may not propagate at all. This allows the usual 
time space at long distances and more dimensions at shorter ones, as in 
Kaluza-Kle in  theories. 

8. QUANTUM SEMANTICS 

The critical remaining part of a plexus theory is not an absolute 
dynamics but a semantics, the assignment of meanings to plexors; not 
another  story on the tower, but one of the services, like syntax, that must be 
provided on every story. What is the plexor (or statistical operator on 
plexors) representing a particular laboratory or cosmological process? What 
process is represented by a given plexor? Here is some of what we have 
constructed so far of plexus semantics. 

Each plexor P denotes a dynamical process, what in cq theory is 
represented by an initial psi vector, a sequence of small unitary transforma- 
tions, and a final psi vector. 

Plexor addition represents q superposition of possibilities. Plexor 
(Clifford) multiplication represents Boolean or symmetric "addit ion." 
Bracket represents the formation of a topological or interactive unit 
(monadic) from constituent processes; expresses interactive links. P =1 
stands for the null process. 

Each factor of P represents a monadic part (time-space cell with fields) 
of the process P. The grade of P is its hypervolume in chorons (fundamen- 
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tal q hypervolumes), and its expectation value is a large number. The plexor 
transpose represents CTP. 

Each monadic factor (P'I of P defines a simplex whose vertices 
(bracketed) are the members of P '  ("second members" of P). By their 
overlap the second members of P define the global topology of the world 
described by P. 

The fields usually represented by differential forms of degree n are now 
represented by (n +l)-adic coplexors scalar fields by monadics, covector 
fields by dyadics, and so forth, subject to membership in P*. Dually, the 
fields usually represented by tensors of degree n of the Grassmann algebra 
over the tangent vectors are represented by (n + 1)-adic plexors. (Actually, 
by members of S** rather than S.) Exterior differentiation d is represented 
by the creator do* of the sum o of all the world vertices, restricted to P*. 

The third and further members of P can be varied to provide more 
possible time-space points. They enter therefore into the time-space coordi- 
nates, as well as into fields attached to the points. 

9. R E M A R K S  

It is over half a century since Von Neumann (1932) discovered q logic, 
and a q set theory has been sought for about half that time. In hindsight, 
one conceptual problem is most responsible for this stasis, besides the usual 
human ones. It has taken this long to realize how great is the difference 
between a class, which represents a predicate, and a set, the subject of this 
predicate. The distinction is troublesome and blurred in mathematics, where 
all the objects considered--the number 1, the function tanx, and so 
on--possess, naively speaking, the same degree of actuality. In physics there 
seems to be a sharp and easy-to-see difference between the set of planets of 
the solar system and a class of nine possible locations for the planet Earth 
in the year 1,000,000. In physics, then, it seems understandable to associate 
the term classes with collections of possibilities and sets with collections of 
actualities, a modal distinction Aristotle already points out as necessary for 
science if not for mathematics. 

Von Neumann, for example, made no such sharp distinction in his 
writings on q logic. He corresponds (Von Neumann, 1954) the q algebra of 
Hilbert subspaces with both the c algebra of sets, incorrectly, and the c 
algebra of predicates or classes, correctly. He had q classes and thought he 
therefore had q sets, at least at this still formative stage in his theory. We are 
acutely aware that Von Neumarm is as responsible as anyone for making the 
formal distinction between sets and classes part of modem logic; and that 
he correctly treats (Von Neumann, 1932) psi vectors as unit classes. But 
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then on the one hand he explicitly states (Von Neumann,  1954): " . . .  the 
logical treatment corresponds to set theory ... logics correspond to set 
theory . . . .  " And on the other hand, in the same paragraph, Von Neumann 
identifies the measures of sets with probabilities, as if the sets were classes. 
Evidently it is possible to make the formal distinction between classes and 
sets without always making the modal one. The confusion of possibility with 
actuality has haunted quantum theory since Schr6dinger interpreted the 
square of his psi function as charge-density. 

Just this conflation of set with class occurs throughout Finkelstein 
1969a. Moreover, the vague concept of "flexible logic" proposed there is 
sharpened in q relativity: Every element of structure of the q logic of SC is 
only defined relative to CS. How the logic and its Hilbert space depend 
upon the CS can now be studied quantitatively in simple models at least. 

The next most important concept in this work is the bracket operator, 
which enables us to build the world from the null set instead of from the 
vacuum. " W h y  is there something instead of nothing?" Any theory of the 
present kind has a response to this old question. If "nothing" is represented 
by the projector [G = 0] on the plexor 1, and "something" by its comple- 
ment  1 - [G = 0], then the a priori probability of nothing, which has trace 1, 
is zero relative to something, which has trace infinity. If  by "nothing"  is 
meant  0 instead of 1 (though for us "1" means "nothing,"  while "0"  means 
nothing), then the probability of nothing is zero all the more. Field theory 
cannot give this answer because it cannot formulate the question. Instead it 
answers the question, " W h y  is time space occupied instead of void?" The 
projector [G = 0] of fermi field theory represents the vacuum in infinite time 
and space, not the null set. 

Here  pauses this progress report on what began as a search for the Law 
of Nature  and has become a search for a basic theory. The relativity of 
dynamical  law seems a natural step for what Toulman (1982) has called 
postmodern physics. It  would have been an anticlimax were the end of 
theoretical physics to be some closed formula for a Lagrangian or the like, 
as unification doctrine suggests. Instead we seek to represent a process 
greater than and including ourselves, in terms of one basic process; a 
paradoxical  open-ended quest. 

A C K N O W L E D G M E N T S  

A private communication of C. F. von Weizsacker on the impropriety of considering the 
universe as a physical system encouraged these considerations. David Bohm long ago em- 
phasized the importance of simplicial homology and the unimportance of absolute law for 
physics. The willing suspension of disbelief of the participants in the Georgia Tech Quantum 
Topology Workshop over a number of years was essential for this work. After this paper was 
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completed we received a private communication from Elihu Lubkin concerning his "physics 
without time" containing this paragraph: 

" I  have got bogged down in snarls over selecting a Hamiltonian. Partly I feel it is wrong to 
try to select: A plurality of Hamiltonians is like having external field parameters, and in a 
thermodynamic context that is provided for by a variety of baths." 

This paper is based upon work supported in part by National Science Foundation Grant 
No. PHY800-7921, and upon the Ph.D. thesis of Rodriguez (1984). 
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